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Abstract

We extend here our earlier idea of a ®nite-time exergy [S. Sieniutycz, M. von Spakovsky, Energy & Conversion

Management 39 (1998) 1423±1447; S. Sieniutycz, Open Sys. Information Dyn. 5 (1998) 369±390; S. Sieniutycz, Int. J.

Heat Mass Transfer 41 (1998) 183±195] to ¯uids characterized by complex exchange of heat and to those with coupled

heat and mass transfer. Functionals are formulated which express work delivered from (or consumed by) a non-

equilibrium system composed of a complex ¯uid, a thermal machine and the environment (acting as an in®nite res-

ervoir). The complex ¯uid constitutes a resource of a ®nite ¯ow or amount, and work production (consumption) takes

place sequentially, in stages of ``endoreversible'' thermal machines. Boundary layers play the role of resistances for heat

and mass transfer, and cause the entropy production at each stage of the operation. For the ¯uid at ¯ow, total speci®c

work is extremized at constraints which take into account dynamics of heat and mass transport and rate of work

generation. Finite-rate model subsumes irreversible production of entropy and losses of classical work potential, caused

by the resistances and explains restrictive applicability of classical thermodynamic bounds. Formal analogies between

the entropy production expressions for work-assisted and conventional exchange operations help to formulate opti-

mization models of the former. Optimal work potentials, which incorporate a residual minimum of the entropy pro-

duction, are analyzed in terms of end states, duration and (in discrete processes) number of stages. Ó 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction: aims and scope

The objective of this paper is the optimization of

work in systems with complex ¯uids. We shall consider

the optimization of work produced or consumed by the

ideal thermal machine (Carnot engine or heat pump) in

an non-equilibrium system containing a polymeric ¯uid

and the environment. Important thermoeconomic ex-

tensions of this problem are possible, which, however

are not considered in this paper. Our optimization

problems belong in thermodynamic optimization, where

process performance criteria are set on purely thermo-

dynamic ground; in a related thermoeconomic problem

investment costs and economic considerations are in-

volved. Optimization of an operation requires the

knowledge of a performance criterion, a process model

and constraints. It is best if the model is analytical; it

must be selfconsistent and describing the considered

operation in a reasonably broad range of changes of the

process state variables and controls. The optimal solu-

tion must extremize a performance criterion. This and

next section enunciate: the underlying ideas of the the-

ory, its main physical and mathematical ingredients, the

methods involved, and the physical and mathematical

structure of the theory. A synthesizing form allows to

stimulate a state-of-the-art discussion. Issues written for

experts are reduced, to allow a mixed, interdisciplinary

audience. A special e�ort is made to convince the reader

that the non-Newtonian nature of heat and/or mass

transfer (when described in terms of Carnot intensities T 0

and l0) does not complicate the general thermodynamic
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formalism, while it in¯uences the formal structure of

exchange equations (only) beyond the linear regime.

This facilitates and uni®es the state-of-the-art discus-

sion.

We explain ®rst the underlying ideas of the theory.

Consider a macroscopic process and its evolution in the

corresponding thermodynamic space, i.e., in the state

space �x� in which the coordinates x are the set of in-

dependent thermodynamic quantities. The general for-

mulation of ®nite-time thermodynamics (FTT) states

that a completely general extension of classical ther-

modynamic evolution between two points A�x� and B�x�
can be achieved by adding only one constraint: the

process under consideration must go to completion in a

®nite time (either given or undetermined). This single

requirement which clearly goes beyond reversible oper-

ation opens up a wealth of new results and consider-

ations. Some of them are extensions of well established

Nomenclature

A; a cumulative and local heat exchange

area, respectively

A ®nite time availability, generalized

exergy

av speci®c area of heat exchange (per unit

volume)

B classical exergy of controlled phase

c; c molar and speci®c heat

F cross-sectional area of the system

G mass ¯ux (G0 refers to circulating

¯ux)

g1; g2 partial conductances

g overall conductance

H enthalpy of polymeric solution

(solvent basis)

I 0 enthalpy of driving phase

L natural scale of length

l transfer area coordinate

M molar mass

N total number of stages in a multistage

process

n current stage number of a multistage

process

P cumulative power output

Q cumulative heat exchanged

q1 driving heat in the engine mode of the

stage

R universal gas constant

R�x; t� optimal work function of cost type in

terms of state and time

S entropy of controlled phase

Sr speci®c entropy production

T temperature of controlled phase

T e constant equilibrium temperature of

reservoir

T 0 driving temperature, temperature of

controlling phase

T1; T2 temperatures of upper and lower

reservoirs (usually T2 � T e and T1 � T )

T10 ; T20 upper and lower temperature of cir-

culating ¯uid

T n temperature of stream leaving the

stage n

t physical time, contact time

u � dT=ds rate of the temperature change as the

control variable

V volume of the physical system

V � max W optimal work function of pro®t type

V n�x; t� optimal work function for

n-stage process

v linear velocity of the ¯uid

W � P=G total speci®c work or total power per

unit mass ¯ux

W solvent content in dense solution

(polymer basis)

X polymer's concentration in controlled

solution (solvent basis)

a0 heat transfer coe�cient

b relative pressure of solvent

C negative Hessian matrix of entropy

function

c coordinate of overall cumulative

conductance

c1; c2 coordinates of partial conductances

g � p=q1 ®rst-law e�ciency

hn free interval of an independent

variable or time interval at stage n

lk chemical potential of kth component

n logarithmic intensity constant

q density

rs entropy production

s non-dimensional time, number of the

heat transfer units �l=L�
Subscripts

C Carnot point

i ith state variable

s saturation, equilibrium

r dissipative quantity

1, 2 resource ¯uid and reservoir ¯uid

Superscripts

e environment, equilibrium

f ®nal state

I initial state

k or n number of kth or nth stage
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concepts (e.g. thermodynamic potential and exergy)

while others are new (e.g. thermodynamic distance and

the need for distinction between objective functions

which govern the ®nite-time evolution. In this paper, we

focus on the extremum of work in a ®nite time.

One of possible objectives that can be chosen is work

that can be released (or consumed) from a sequence of

reversible thermal machines when the system which

changes its states between two points A�x� and B�x� in-

teracts actively with the environment. (This work also

contains the environment intensities, T e; le, etc., which

we shall exclude from the set of the state coordinates x

as they are constant parameters.) While the work re-

leased or produced in any reversible evolution from A�x�
to B�x� is the path independent quantity, this work be-

comes a path dependent function in the case of any ®-

nite-time transition occuring between A�x� and B�x�. The

reason is the ®niteness of the entropy generation in a

®nite time process. This quantity de®nes both the

availability losses and ± after its minimizing ± the ®nite-

time availability, with a residual (minimal) entropy

production. The extremum of work produced (con-

sumed) is then associated with an evolution that mini-

mizes the entropy production, in agreement with the

well-known Gouy±Stodola law. The work extremization

(or the associate entropy production minimization) is by

no means the iron rule when considering a ®nite-time

evolution. Optimization criteria other than work, such

as economic pro®t, costs, transfer area, etc., can be

considered which are not less relevant for ®nite-time

transitions. However, we restrict here to work optim-

ization problems.

The main physical and mathematical ingredients of

the theory are dynamical equations of change which

describe the time evolution of a work-producing system

(called sometimes ``an active system''). These may be

continuous or discrete. They are derived by combining

balance laws of energy and mass (written in terms of

bulk state coordinates) with laws of energy and mass

transfer through the boundary layers (or resistances)

that are present both in the system and in the environ-

ment. As compared with traditional systems (without

work), the essential system ingredient is the work ¯ux

delivered from engines (or consumed by heat pumps),

located between the system and the environment. This

work ¯ux is maximized in all engine modes and mini-

mized in all heat-pump modes of the system subject to

constraints of entropy and mass conservation, charac-

teristic of each perfect thermal machine. From the for-

mal viewpoint, each such a machine constitutes a

physical discontinuity separating the system from the

environment. This discontinuity is a sort of work-pro-

ducing or work-consuming jump that works due to the

di�erence between the intense parameters of the system

and the environment at their disjoint interface (i.e., due

to the di�erence between temperatures T10 and T20 in

Figs. 1 or 2). This disjoint property enuntiates the in-

herent non-equilibrium nature of the problem. The

methods involved in the theory are those used in dy-

namic optimization. Thus variational calculus, maxi-

mum principle and dynamic programming can be

applied; some of them are discussed in Section 5. They

cause that the mathematical structure of the theory is

symplectic, and the optimal evolutions are governed by

Hamiltonian canonical sets (continuous or discrete).

Knowledge of both classical and non-equilibrium

thermodynamics of complex ¯uids helps signi®cantly

Fig. 1. Generic irreversible engine �06 g6 gC� on the tem-

perature±entropy diagram.

Fig. 2. A scheme of one-stage heating of a polymeric solution

by a heat pump.
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in optimization. Relevant classical topics involve

thermomechanics of complex elastic materials, equilib-

rium thermophysics and statistical physics of polymers

[1±5]. Associated non-classical topics involve thermo-

mechanical theories of ¯owing polymeric ¯uids, often

derived from non-equilibrium statistical theory of

polymers [6±10]. However, at the present time, no sys-

tematic results are reported in the ®eld of complex ¯uids

optimization. One basic reason for an insu�cient pro-

gress in this direction is the scant development in theory

of non-isothermal complex ¯uids to date; even advanced

and modern textbooks on rheology and mechanics of

polymeric ¯uids do not treat systematically the subject

of energy transformations in non-isothermal ¯uids. Im-

portant contemporary problems of thermodynamic op-

timization, such as irreversible extensions of the Carnot

problem, extremize work from systems with di�erent

temperatures. For a system containing a ®nite resource

that interacts with an in®nite environment in an in®nite

time the extremal solutions should yield the classical

exergy at the reversible limit [11]. These problems can be

stated either for resting or for ¯owing ¯uids. Yet irre-

versible extensions of exergy to non-Newtonian ¯uids

are unknown to date in spite of recent progress in clas-

sical and irreversible thermodynamics of complex ¯uids.

There is an important link between thermodynamic

optimization and process economics. If the process

performance criterion is set on the economic ground, the

optimal solution extremizes an economic pro®t. When

the equipment in which the process runs is ®xed (con-

stant investment cost) and all outputs are prescribed by

the technology requirements, the exploitation cost or the

sum of all economic inputs associated with consumption

of energy and materials can be minimized. In view of the

incompleteness and uncertainty of economic prices data,

thermodynamic optimization is often used to replace the

economic problem of minimum costs by the thermody-

namic problem in which the corresponding exergy costs

(usually total exergy input) are minimized. Approxi-

mately, for all participating forms of matter under as-

sumption of a common economic value of exergy unit, e,

thermodynamic and economic optimizations are equiv-

alent. In reality, however, the values of e are di�erent for

various process participants, and the equivalence is sel-

dom satis®ed. Yet, even if the results of both optimiza-

tions diverge, those generated by thermodynamic

optimization have the virtue of larger universality. For

example, the minimum of work necessary to condense

the unit mass of oxygen is the function of the oxygen's

end states, independent of the ¯uctuating economic

conditions. It is the state function property of the exergy

which causes thermodynamic optimization to generate

the universal data [11].

Fluxes of work can drive open, thermally isolated

macroscopic systems o� the thermodynamic equilib-

rium, thus increasing their exergy. The resulting exergy

surplus can be stored and then exploited. A polymer or a

polymeric ¯uid can be regarded as a storage system for

the exergy; the work delivered from that system can be

used for suitable bene®ts. Yet it is well known that (the

dynamical properties of) natural transfer processes are

governed by a common criterion of minimum entropy

production [12]. In this work we show how the criteria of

work and entropy can become reconciled in the realm of

complex ¯uids and traditional heat and mass transfer

processes. We also show the power of thermodynamic

approaches when using these basic criteria in modeling

and optimization of sequential thermal machines.

We shall construct exergy and entropy criteria for

optimization of sequential work-assisted thermome-

chanical operations which run jointly with `endorevers-

ible' thermal machines, and compare the structures of

these criteria with those describing traditional (heat and

mass) transfer operations (without work). At the present

time three basic approaches are available while modeling

and optimizing thermomechanical systems with pro-

duction or consumption of mechanical energy (work):

classical second law analyses [11], ®nite time thermo-

dynamics (FTT, [12]) and entropy generation minim-

ization (EGM, [13]). Of these approaches especially FTT

and EGM systematically include the various concepts of

contemporary irreversible thermodynamics. Their po-

tential for incorporating results from dissipative ¯uid

mechanics or non-equilibrium ®eld thermodynamics can

also be shown [12,13]. The signi®cance of FTT and

EGM methods will increase in the future because of (i)

their ¯exibility in incorporating irreversible theories

through the use of the independent information con-

tained in the entropy generation r, (ii) the broad range

of realistic power-type or cost-type criteria encom-

passed, and (iii) their explicit use of the concepts of the

process state and state control in the generalized sense of

process dynamics. The traditional second law analyses

are less suitable; their globality is a dangerous feature,

which may lead to errors [14,15]. Because of their own

limitations, global analyses are more useful for identi-

fying improper processes than for proving that an actual

design will work. Therefore, only local approaches, such

as FTT and EGM, which link the di�erential balances

with kinetics are fully reliable. But such approaches

while still under the development for thermomechanical

systems [16±19] are practically absent in the realm of

polymeric ¯uids. For optimization of systems of heat

pump type which consume work or systems of engine

type which produce work, the need for local approaches

(which include local treatments of balance and kinetics)

is explicit even in those works which contain otherwise

detailed thermoeconomic accounting [18,19].

This work contributes to the theory of energy pro-

duction (consumption) in all thermal systems in which

e�ect of ¯uxes on e�ciencies is essential. As the incor-

poration of non-Carnot e�ciencies into optimization

900 S. Sieniutycz / International Journal of Heat and Mass Transfer 44 (2001) 897±918



models requires usually rather advanced analyses

[20±23], optimization of systems containing thermal ma-

chines (engines or work consumers) with complex ¯uids is

the new subject. In view of this fact, our present work

shows in Section 3, how to derive non-Carnot e�ciencies

and formulate suitable thermodynamic criteria for opti-

mization of operations with non-Newtonian heat ex-

change. This particularly refers to sequential systems with

®nite and in®nitesimal stages, analyzed in Section 4. In

this analysis the development of analogy between the

work-assisted and traditional operations should be

pointed out. In an e�ciency expression for a thermome-

chanical machine, a simple substitution applies which

introduces the `driving temperature' T 0, a suitable control

variable. In terms of T 0 the ®rst-law e�ciency of the

machine is simply given by the Carnot formula,

g � 1ÿ T e=T 0. Furthermore, by using T 0 we arrive at the

structure of the entropy production rs which is in

agreement with the well-known expression for rs in the

conventional processes, which do not produce any work

[12,23,24]. Also, in terms of T 0, the Gouy±Stodola law

[11] holds in the form which is precisely that of the tra-

ditional processes. In fact, we observe in Sections 4±6 a

number of intriguing analogies between the work-assisted

and traditional operations which help optimize the for-

mer. In particular, Section 6 shows how to obtain gen-

eralized functionals of work and entropy production for

the case of heat transfer coupled with transfer of mass. In

Section 7 we exploit the thermodynamic data of Section 2

to obtain ®nite-time exergies for operations with coupled

heat and mass transfer. Section 8 summarises our results

and presents the most important conclusions.

For multistage thermomechanical operations, equa-

tions of the theory apply discrete models based on dif-

ference rather than di�erential equations. An analogy

between optimal multistage processes with free time in-

tervals hn (described by di�erence equations and opti-

mization criteria in form of sums) and continuous

processes (described by di�erential equations and opti-

mization criteria in form of integrals) is essential [24±30].

Thanks to this analogy, optimization algorithms ob-

tained in the continuous framework can easily be

transformed to algorithms of discrete processes, which

means that analyses made in one framework need not be

repeated in the other. A discrete Hamiltonian function,

which is constant along optimal trajectories, is a suitable

tool that governs the discrete optimization scheme.

Optimization theory for the discrete processes with free

time intervals hn is similar to Pontryagin's continuous

theory, in contrast to standard theory of discrete pro-

cesses [24]. This Pontryagin's-type discrete theory was

developed in the context of multistage separation oper-

ations and chemical reactors [24±30]. The parallelism

between continuous and discrete models of thermome-

chanical operations is a new subject [31] which is worth

exploiting as it helps generate the results of optimal

work and thermodynamic limits in a systematic way. In

this development we refer the reader to our earlier

publications on extremum work generated from (or

supplied to) Newtonian systems [21±23,32].

2. Finite-time generalization of classical reversible work

This section shows the link between classical and ir-

reversible thermodynamis of maximum work in a ®nite

time. As the ®nite-time work depends on both thermo-

dynamic and ¯ow properties, both classical and irre-

versible thermodynamics are applied in modeling of

energy production (consumption). The suitable systems

involve a polymeric ¯uid that interacts through an en-

gine or a heat pump with the environment or an in®nite

bath, Figs. 1 and 2. To study thermodynamics and

transport phenomena in polymeric ¯uids, some kind of

mechanical model which represents the actual molecule

of the polymer should be accepted ®rst. As the motion of

molecules in ¯owing systems is more complicated than

in equilibrium systems, we cannot model rheological

systems rigorously. Hence the lumped-parameter

framework is often accepted; it is also accepted here.

Simpli®cations are also made in molecular models, both

in those describing dilute polymeric solutions and in

those for concentrated polymers, melts and amorphous

solids. Of many kinds of synthetic and biological poly-

mers, such as: long chainlike molecules, rigid molecules,

chains with side branches, etc., we may consider only the

®rst of these: long ¯exible chains with repeating units.

Even the elastic dumbbell, a highly oversimpli®ed sur-

rogate of the bead-spring chain, is quite applicable in

exploratory investigations. For qualitative aims, dum-

bell models with ®nitely extensive non-linear elastic

(FENE) spring forces can be used. These models can

simulate well both mechanical and thermal properties of

the chain: its stretchability, its orientablility and its

many degrees of freedom. However, to date, these

models were used to simulate mainly mechanical prop-

erties of ¯ows (such as: steady shear ¯ow, inception of

shear ¯ow, steady elongational ¯ow and inception of

elongational ¯ow). Based on these models, statistical

theories of polymer conformations appeared aimed to

®nd the probability distribution for the distance d be-

tween the ends of the n-mer, for a de®nite model of the

chain. The cell (or lattice) theory of chain molecules can

also be exploited [4]. It lead to very good correlations of

speci®c heats for hydrocarbons and it was shown to

interpret well properties of non-polar polymer solutions.

The phase-space molecular theory can describe thermal

and transport properties for both dilute solutions and

for concentrated solutions and melts. For the latter,

other theories, those of network type, derivable from the

kinetic theory of rubber elasticity or Doi±Edwards

`slipping network model' [5,7] can also be used. As the
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extremum work problem can be stated for polymers in

solid, liquid or glassy states and also for polymeric

solutions and suspensions, properties of polymers in

diverse states are generally required.

When the polymers long-chain properties are taken

into account, the thermodynamic data stemming from

Flory±Huggins theory [1±6] make it possible to calculate

exergy functions, which are directly related to the re-

versible-minimum separation work of polymers from

their solutions. The so-called engine convention is used

here in which the work produced during the polymer's

dissolving W is positive. This corresponds with the

negative work W [or the positive work ()W)] which is

consumed during the solution separation. Assuming an

s-component mixture in which the solvent is the ®rst

component, the reversible exergy per unit mass of the

mixture at ¯ow is

Aclass �
Xs

i�1

Hi

� ÿ H e
i ÿ T e Si

ÿ ÿ Se
i

�	
xi; �1�

where xi are mass fractions.

With this equation, the reversible separation work

for a de®nite system follows from the input±output

analysis applied to Aclass. A generalized expression ob-

tained from the above formula in the ®nite-time ther-

modynamics takes into account irreversible losses of

work

�ÿW � � D
Xs

i�1

Hi

ÿ ÿ T eSi ÿ le
i

�
xi � T eSr

� DH ÿ T eDS ÿ
Xs

i�1

le
i Dxi � T eSr

� �ÿW �rev
min � T eSr �2�

where Sr is the entropy production per unit ¯ow of the

mixture and the operator D refers to two arbitrary states

of the system of which the second follows the ®rst. This

equation incorporates the Gouy±Stodola law for the

process in which a dissipative ¯uid changes its states by

interacting with the environment through the perfect

thermal machine. The work �ÿW � is a functional which

is expressed above as the change of the exergy (avail-

ability) potential plus the product of T e and the entropy

production functional. The classical exergies correspond

with Sr � 0. See [11] for classical exergies.

Similar formulae refer to work per unit amount of

the solvent. For dilute solutions, it coincides with the

work per unit mass of the solution. For a solvent±

polymer system

�ÿW � � D H1

� ÿ H e
1 ÿ T e�S1 ÿ Se

1� �X H2

� ÿ H e
2

ÿ T e�S2 ÿ Se
2�
�	� T eSr �3�

or, equivalently,
�ÿW � � D H1

� ÿ T eS1 ÿ le
1 � H2

ÿ ÿ T eS2 ÿ le
2

�
X
	� T eSr

� DH ÿ T eDS � le
2DX� T eSr

� �ÿW �rev
min � T eSr: �4�

On the other hand, the polymer's dissolving can

produce work. This requires considering the process

with inverted thermodynamic states. As for any two

thermodynamic states A and B the modules of the re-

versible work are equal after the end states are inverted,

i.e., W rev
max�B!A� � �ÿW �rev

min�A! B� � DAclass, we

®nd for the inverse process of work production during

the polymer's dissolving

W ÿ W rev
max � ÿT eSr: �5�

It is the ®nite rates which decrease the mechanical

energy yield. Eq. (5) may be compared with the previous

result for the excess of separation work caused by ®nite

rates

�ÿW � ÿ �ÿW rev
min� � T eSr: �6�

As the entropy production is always positive, the

above formulae state that the ®nite-time separation

work of the polymer from its solution, �ÿW �, is larger

than the change of the classical exergy or �ÿW �rev
min,

whereas the work which could be produced during the

process of polymer's dissolving, W, must be smaller that

the corresponding change of the classical exergy, W rev
max.

In fact, for a majority of processes in which polymers are

dissolved, the real work W equals zero, corresponding

with a natural process and a ®nite rate of the entropy

production, Sr � W rev
max=T e, associated with a ®nite rate

of spontaneous dissolving.

Clearly, our expressions take into account the en-

tropy generation in the non-equilibrium system com-

posed of a polymeric solution and the thermal reservoir.

Our formulae show how the classical results which de-

scribe the reversible work can be generalized when

evalulating the extremum work delivered with a ®nite

rate, when irreversibilities play a role. When one of the

end states is that of equilibrium the extremum values of

the work functionals describe the so-called ®nite time

exergies as they refer to changes of the system between

two di�erent thermodynamic states in a ®nite time.

The ®nite-time extremum work depends on transport

properties of a complex ¯uid under consideration (as

opposed to the reversible-extremum work, which is in-

dependent on these transport properties). Hence the

need for at least a residual information helping to

evaluate thermal conductivities and di�usion coe�-

cients, such as that in Eqs. (7)±(9). From these data

conductances of heat and mass transfer follow which are

used to calculate ®nite time exergies. These conduc-

tances are de®ned as products of respective transfer ar-

eas and heat (or mass) transfer coe�cients ± ratios of

corresponding conductivities (di�usivities) and thick-

nesses of resistive layers. To evaluate data of solid

conductances, the calculation of thermal conductivity of

solid polymers, k, is required; this is based on generally

accepted principles of the heat transfer mechanism in

solids [2]. The phonon model of heat conduction leads to
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expression of the type k � Kcvul, where K is a constant,

u average sound speed and l mean free path for pho-

nons. For crystalline polymers the product cvu decreases

with T and so does k; approximately one can have:

k � km � 0:2 J/(mKs) at T > Tm and k � km � 0:17

�Tm ÿ T � at T < Tm [3]. For amorphous polymers at

T < Tc the mean free path l is temperature independent

and k increases with T; approximately: k � kc � 0:19 J/

(mKs) at T > Tc and k � kc ÿ 0:02�Tc ÿ T � at T < Tc.

The adduced sources also help to estimate thermal

conductivities of polymeric solutions. In solutions es-

sential changes of k with concentration are observed for

mass fractions x less than 0.2±0.3 [3]. For larger x the

thermal conductivity of a solution k is approximately

concentration independent and its temperature depen-

dence is analogous to that for melts, which predicts the

decrease of k with T. This agrees with the additivity of

the `free volume' e�ect [3,4]; thus for evaluations of k in

solutions the following formula can be used

k � k0 � �k1 ÿ k0�x=�1ÿ b�1ÿ x��; �7�
where k0 and k1 are respectively the thermal conductiv-

ities of the solvent and molten polymer and b is the

polymer constant. The above formula was proposed in

[3]; its engineering approximation is based on an average

value of b � 0:7, where k1 � 0:19 J/(mKs) can be used as

the simplest estimate in the absence of more exact data.

Evaluations of k for T lower than the melting or dis-

solving temperature are less important as solid polymers

are then usually in forms of suspensions whose thermal

conductivities in convective heat transfer processes are

determined by the thermal conductivity of surrounding

liquid. In sheared polymeric liquids experiments show

the e�ect of polymer conformation on the anisotropy of

thermal conductivity: the values of k parallel to the

molecule backbone are higher than those perpendicular

to it. Theoretical analyzes of microstructure [5±7] derive

a general equation for the thermal conductivity tensor

applicable to amorphous polymers and polymeric solu-

tions. The ®rst term of this equation is related to the

thermal conductivity of the solvent, the second to the

mass fraction of the polymer and the other to micro-

scopic parameters of the model. Here we shall neglect

these anisotropic e�ects; however we refer the reader to

review of these issues [9]. Amongst many speci®c e�ects,

one may take into account the e�ect of the concentration

a�ected heat transfer [5]. It should also be stressed that

the applicability of the Fourier's law, q � ÿkrT , does

not necessarily mean the Newtonian equation of heat

exchange, q � aDT . Examples are natural convection

and boiling systems, where a may be proportional to

DT 1=4. In fact, we consider in this paper an exchange

equation of the form q1 � g1DT a, where g1 is a con-

ductance-like constant.

Mass transfer conductances in polymeric solutions

folllow from their di�usivity coe�cients. As the rate of

thermal motion of molecules can be characterized by the

selfdi�usion coe�cient, a polymer±solvent system can be

characterized by two selfdi�usion coe�cients: that of the

solvent, D1 and that of the solved substance (polymer),

D2. Frenkel's vacancy model can be used to evaluate

these selfdi�usion coe�cients and related mobilities. The

resulting coe�cient of mutual di�usion Dv (which ap-

pears in the second Fick's law) can be calculated in

terms of D1 and D2. It refers to the crosssection satis-

fying the condition that on its both sides the system

volume conserves the constant value. Then, in terms of

the molar concentrations Ck , at constant P and T,

Dv � 1

RT
D1v1

ol1

o ln C1

� 1

RT
D2v2

ol2

o ln C2

; �8�

where the coe�cients D1 and D2 satisfy the equality

D1=M1 � D2=M2 and the subscript 2 refers to the poly-

mer as the solved substance [3]. For ideal systems

D1 � D2 � Dv � D, where D is the selfdi�usion coe�-

cient. If the crosssection associated with the stagnant

solvent is used (the case of interest here), the coe�cient

D0 � Dv=�1ÿ /2� should be used, where /2 is the vol-

ume fraction of the polymer. Then the following work-

ing formula holds for the di�usion of polymer with

respect to the solvent

D0 � D1

1ÿ /2

�/2 � �/1=mÿ 2X��/1/2; �9�

where D1 � kT=K1 is the selfdi�usion coe�cient of the

solvent based on the frictional coe�cient K1, and

m � V 2=V 1. The interaction coe�cient X can be evalu-

ated from Flory's theory or red o� from respective di-

agrams [3,4]. We assume that the above equations are

su�cient to calculate the di�usion coe�cients and re-

lated mass conductances.

3. Power generation or consumption in sequential opera-

tions with heat transfer

From the view point of energy transformations the

complex ¯uid plays the role of a resource whenever its

intense parameters di�er from those in equilibrium with

an environment. This di�erence causes the yield of me-

chanical energy in an engine-type process. During the

energy yield the value of any ®nite resource decreases,

the depreciation is associated with change of the re-

source's intense parameters towards its equilibrium with

the environment. Yet the resource utilization is possible

in the inverse process, that of heat-pump type, where

work is consumed and state changes of the resource are

directed outwards the equilibrium. Here we shall con-

sider these energy- transforming processes in two cases,

the ®rst (simpler) in which the ¯uid's state changes are

restricted to changes in ¯uid's temperature only, whereas

the polymer's concentration in the ¯uid is ®xed at the
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level of its initial value, and the second, more realistic

but also more involved, in which the concentration may

vary.

To begin with, let us consider the work generation or

consumption in an ``endoreversible'' (internally revers-

ible) thermal machine, an engine or heat pump, which

interacts with a high-T ¯uid ¯owing with the mass ¯ux

G. Principles of modeling of sequential endoreversible

systems composed of engines or heat pumps working at

steady state are known [12]. Fig. 2 presents a scheme of a

single-stage system in which a polymeric ¯uid is heated

by an endoreversible heat pump to which work is sup-

plied; the second ¯uid is an in®nite reservoir. This op-

eration can be contrasted with an endoreversible engine

where a resource ¯uid drives the Carnot engine from

which the work is taken out (the second ¯uid is again an

in®nite reservoir).

On the other hand, Fig. 3 shows a scheme of multi-

stage power consumption. The ¯uids are of ®nite ther-

mal conductivity, hence there are ®nite thermal

resistances in the system, representing the dissipative

e�ect of their thermal boundary layers. In a multistage

heating the ¯uid's T changes at each stage; the whole

process is characterized by the sequence T 0; T 1; . . . ; T N .

We use the common `engine convention' in which the

work generated in an engine, W, is positive, and the

work generated in a heat pump is negative; this means

that a positive work �ÿW � is consumed in the heat

pump. The quantity W has the dimension of work per

unit mass, thus it describes a speci®c work produced or

consumed by the ¯uid at ¯ow. In thermodynamic opti-

mization, the work generated by an engine is maximized

and the work consumed by a heat pump is minimized.

The optimization is made under a set of various process

constraints which may include those imposed on total

investment costs. When the ®nal state of the resource

¯uid is the state of equilibrium with the environment

�T N � T e�, the maximal speci®c work represents a ®nite-

time exergy of the engine mode for the ¯uid at ¯ow.

When the initial state of the controlled ¯uid is at the

state of equilibrium with the environment �T 0 � T e�, the

minimal speci®c work to achieve T N represents a ®nite-

time exergy of the heat-pump mode.

The considerations below are constrained for sta-

tionary or cyclic processes in which there is no entropy

accumulation and the entropy production vanishes in the

reversible part of the system. In a single-stage process the

¯uid's temperature changes between T 0 and T 1, the re-

lated heat ¯ux is q1 � Gc�T 1 ÿ T 0�. We can evaluate the

speci®c work produced in a single endoreversible engine

or that consumed in a single endoreversible heat pump

[12]. As the endoreversible machine is a lumped-param-

eter model for a generic class of real work-producing

devices with irreversible dissipators (heat and mass

conductors), the problem of ®nite-time optimization of

work can be imbedded in (or derived from) the general

economic problem of optimization of a practical device

subject to the constrained investment. The constrained

investment means that the device or an industrial enter-

prise requires the investment money to be used with

limitations, hence the system size and/or the residence

time of ¯owing entities (e.g. heat media, reacting species,

etc.) must be ®nite. Thus, it is only a ®nite time possible

to accomplish required changes of state in a real process.

Fig. 3. A scheme of multistage work-assisted removal of solvent from a polymeric solution, driven by heat and mass transfer processes

in boundary layers and thermal machines.
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This property is not taken into account in classical

thermostatics in which reversible changes of state (asso-

ciated with vanishing rates and in®nite durations) admit

an in®nite investment. It is for the economical reasons,

associated with tradeo� between the investment and fuel

costs, that the optimal times are ®nite. An immediate

consequence of this fact is that the optimal e�ciency of

an endoreversible engine is smaller than the Carnot e�-

ciency whereas the optimal e�ciency of an endorevers-

ible heat pump is larger than the Carnot e�ciency. The

latter is approached by an endoreversible engine either in

the case of a very slow ¯uid ¯ow G or for a very large

transfer area A. The ®rst case cannot be, however, an

optimum as it corresponds with vanishing thermal and

mechanical powers, q1 and p (consider Eq. (15)). Other-

wise, the second case could only occur at the expense of a

very large investment, i.e., for an in®nite transfer areas

(in®nite length of the system). Thus the optimal powers

q1; p and the optimal duration must be ®nite, and it is the

optimization that decides about the most proper regime

in which the system should work. These e�ects can be

enunciated in the quantitative way [21,22].

For an endoreversible process without mass transfer,

the power optimization at the process stage can be

achieved by using a single control variable which a�ects

the mechanical power through its in¯uence on the actual

e�ciency. The endoreversible e�ciency of the engine,

g � 1ÿ T20=T20 , is, of course, lower than that of a Carnot

engine working between the temperatures T1 and T2

because the engine itself operates on the reduced tem-

perature di�erence T10 ÿ T20 . The temperatures T10 and T20

are unknown, but they may be expressed in terms of the

temperatures T1 and T2 and a single control variable at

the stage under consideration. The choice of the control

variable is in principle arbitrary; for example, the con-

trol may be the heat ¯ux, q1, the related entropy ¯ux #,

the e�ciency, g, the temperature di�erence T10 ÿ T20 , or

others. By setting one of these variables, subject the

continuity of the entropy ¯ux through the engine, a ®nite

intensity of the process is decided, and all other quan-

tities follow along with the power p.

At ®rst, however, we have to accept a heat exchange

law between the engine or heat pump and the complex-

¯uid resource which drives the engine or receives the

upgrated heat from the heat pump. Linear law (New-

tonian heat exchange) may be too restrictive; otherwise

the power-law heat exchange, heat ¯ux proportional to

the ath power of DT , is su�ciently general to our pur-

poses. The non-unit exponents in the power-law heat

transfer occur, for example, in natural convection heat

exchange. If the heat ¯ux q1 is the control variable and

the power law, heat ¯ow proportional to the DT a, de-

scribes the heat exchange, the ®rst primed temperature

T10 follows in terms of the controlling heat q1 directly

T10 � T1 ÿ �q1=g1�1=a
: �10�

On the other hand, the entropy balance is necessary

to evaluate the temperature T20 in terms of q1. It has here

the form of the continuity equation for the entropy ¯ux

through the reversible part of engine, q1=T10 � q2=T20 .

With Eq. (10) and the power law for q2 with the expo-

nent b, the entropy balance can be written in the form

q1

T1 ÿ �q1=g1�1=a �
g2�T 02 ÿ T2�b

T20
: �11�

After de®ning the entropy ¯ux function

#�q1; T1; g1� � q1

T1 ÿ �q1=g1�1=a

� q1�T1 ÿ �q1=g1�1=a�ÿ1 �12�
we write the entropy balance (11) in the form of an

equation for the temperature T20

�T20 ÿ T2�b ÿ T20#�q1; T1; g1�gÿ1
2 � 0: �120�

To obtain T20 for an arbitrary b, this equation should

be solved by numerical methods. However, in some

cases analytical solutions can be found. This is so in the

case when b � 1, which refers to the Newtonian heat

exchange between the engine ¯uid and the thermal res-

ervoir. The solution to Eq. (120) in terms of T20 is then

T20 �q1; T1; T2� � T2

1ÿ #�q1; T1; g1�=g2

� T2

1ÿ q1=�g2�T1 ÿ �q1=g1�1=a��
� T2

1ÿ �q1=g2��T1 ÿ �q1=g1�1=a�ÿ1

� T2

1ÿ q1=�g2T10 � : �13�

Note that this equation is still quite general as the

exchange of the a-heat can refer to an arbitrary a. Only

the exchange of the b-heat must be Newtonian, i.e.,

satisfying b � 1. Eq. (13) will be the basis for our con-

siderations here.

Yet, just for the sake of showing the correspondence

with simpler but otherwise familiar solution, we shall

occasionally digress our attention to the most special

case, when both power coe�cients a and b equal the

unity, i.e., a � b � 1. This pertains to the Newtonian

heat exchange between the thermal machine and both

¯uids (the resource ¯uid and the reservoir ¯uid). We

then recover the familiar formula

T20 �q1; T1; T2� � T2 1

�
ÿ q1=g2

T1 ÿ q1=g1

�ÿ1

� T2

T1 ÿ q1=g1

T1 ÿ q1=g1 ÿ q1=g2

� T2

T1 ÿ q1=g1

T1 ÿ q1=g
; �130�
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where the overall conductance of heat transfer is de®ned

in the traditional way, as the harmonic mean; g �
�1=g1 � 1=g2�ÿ1

or g1g2=�g1 � g2�.
Now we return to our basic formula, Eq. (13). The

®rst-law e�ciency of the internal engine satis®es the

Carnot formula in terms of T10 and T20 . With Eqs. (10)

and (13) this e�ciency is obtained in terms of T1; T2 and

q1 as

g � 1ÿ T20

T10
� 1ÿ T2

�1ÿ q1=�g2T10 ��T10
� 1ÿ T2

T10 ÿ q1=g2

� 1ÿ T2

T1 ÿ �q1=g1�1=a ÿ q1=g2

� 1ÿ T2

T1 ÿ �ÿu1�1=a � �g1=g2�u1

; �14�

where u1 � ÿq1=g1 is a measure of the heat added to the

¯uid 1, a suitable control if g1 is constant. It has units of

ath power of temperature, and is positive for ¯uid

heating and negative for ¯uid cooling. The quantity u1

should be distinguished from a similar one, u � ÿq1=g,

that was used in our earlier publications [21±23,31,32]

and is suitable only for Newtonian transfer. From Eq.

(14) we conclude that a quite simple equation links

mechanical power p with heat ¯ux q1

p � q1 1

 
ÿ T2

T1 ÿ �q1=g1�1=a ÿ q1=g2

!

� ÿg1u1 1

 
ÿ T2

T1 ÿ �ÿu1�1=a � �g1=g2�u1

!
; �15�

where the bracketed expression is the ®rst-law e�ciency.

In the case of Newtonian heat transfer in both resistive

layers �a � b � 1� we recover the well-known formula

p � q1 1

�
ÿ T2

T1 ÿ gÿ1q1

�
� ÿgu 1

�
ÿ T2

T1 � u

�
; �150�

where u � ÿq1=g is based on the total conductance g

[21,22,31,32].

The e�ciency of an engine, Eq. (14) or the bracketed

term in Eq. (15), deviates monotonically from the Car-

not law with the ®nite q1 or u. Also, the power p deviates

from that of the Carnot model due to a ®nite q1. For a

quasistatic transfer, i.e for very low q1 or u, the e�ciency

g is that of Carnot. Yet the e�ciency is zero for a suf-

®ciently large q1 at the Fourier point, where the heat ¯ux

satis®es an equation

�qF =g1�1=a � qF =g2 ÿ T1 � T2 � 0: �16�
This corresponds to pure heat conduction and no

power production at all. Thus the power vanishes at

both q1 � 0 and q1 � qF , hence there is a maximum of

power p at an intermediate point. The mechanical power

may be produced only in the range of e�ciencies be-

tween 0 and gc.

The inverted forms of Eqs. (15) or (150) could be used

to present quantities of interest (power p, released heat

x, etc.) in terms of the e�ciency control g instead of the

heat ¯ux control q1. For the Newtonian heat transfer, it

follows from Eq. (150) that the mechanical power

p � gq1, equals p � gg�T1 ÿ T2=�1ÿ g��. This is the

formula available for mathematical analysis. However,

the non-Newtonian generalization of this formula re-

quires explicit solving of Eq. (15) with respect to q1. This

is why the heat ¯ux representation of control is more

suitable in analysis than the e�ciency representation.

Using Eq. (15), the speci®c work produced in a single

endoreversible engine (or that consumed in a single en-

doreversible heat pump) equals W � p1=G [12], where G

is the ¯uid's mass ¯ux. Each of the quantities: q1; g1 or q2

and g2 in¯uence W; each is proportional to the corre-

sponding transfer area, a1 or a2. Only in the Newtonian

case �a � 1� the overall thermal conductance of the

thermal machine can be found as the product g � a0a
where a0 ± an overall heat transfer coe�cient, a ± total

area (the sum of upper and lower areas) and c ± ¯uid's

speci®c heat. Whenever the heat exchange is non-New-

tonian one has to deal with both partial conductances,

g1 and g2. The maximum of W de®nes the bound for the

one-stage work production. In the non-Newtonian case,

the condition op=oq1 � 0 applied to Eq. (15) leads to an

equation

1

T2

ÿ 1

T1 ÿ �q1=g1�1=a ÿ q1=g2

� q1

�ag1�ÿ1�q1=g1�1=aÿ1 � 1=g2

T1 ÿ �q1=g1�1=a ÿ q1=g2�2
; �17�

that can be simpli®ed into the form

�T1 ÿ �q1=g1�1=a ÿ q1=g2�2 ÿ T2T1 � T2�1ÿ 1=a�
� �q1=g1�1=a � 0: �170�
From this equation an optimal value of q1 is obtained

by a search procedure. The associated maximum power

and e�ciency then follow from Eq. (15). The bene®t of

having the analytical expression for the work production

at the stage, Eq. (15), is more essential than the disad-

vantage caused by the numerical solving of Eq. (170). In

the Newtonian case, when a � 1 and analytical solu-

tion exists, Eq. (170) yields the optimal value �q1�m
� g�T1 ÿ

���������
T1T2

p � which corresponds with the ®rst-law

e�ciency gm � 1ÿ ���������
T1T2

p
called the Novikov±Curzon±

Ahlborn e�ciency or NCA e�ciency [12,13,32]. Note

that this NCA e�ciency is not an extremum e�ciency

but the e�ciency at the maximum power point.

To apply the power generation function, Eq. (15), to

a continuous sequential system, the ratios q1=g1 and

q1=g2 should be expressed in terms of the derivatives of

the state variable T1. To achieve this goal, we de®ne for

each transfer area, a1 or a2, the ``length of the transfer
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unit'' L and the non-dimensional length l=L called the

``number of transfer units''. Also the unit volume

counterparts, av1 � a1=V1 or av2 � a2=V1, of the transfer

areas involved, a1 or a2, are de®ned. They are always

referred to the volume occupied by the resource ¯uid

(¯uid 1). Consequently

Gc1

a1av1F1

�L1; s1 � l

L1

� a1av1F1

Gc1

l � a1av1

q1c1

t1 � t1

j1

�18a�
and

Gc1

a2av2F1

�L2; s2 � l

L2

� a2av2F1

Gc1

l � a2av2

q1c1

t1 � t1

j2

;

�18b�
where t1 � l=V1 � q1F1l=G is the ¯uid's residence time

and j1 and j2 play the role of the time constants of the

system. With these de®nitions, the heat balance over the

di�erential length dl yields

u1 � ÿq1=g1 � ÿdQ1=dc1 � Gc�T1�dT1=�a1 dA1�
� Gc�T1�dT1=�a1aV 1F1 dl� �L1�T1�dT1=dl �19a�

and

ÿq1=g2 � u1g1=g2 � ÿdQ1=dc2

� Gc�T1�dT1=�a2 dA2�
� Gc�T1�dT1=�a2av2F1 dl�
�L2�T1; T2�dT1=dl; �19b�

where u1 � ÿq1=g1. Note that L1=L2 � g2=g1. Thus, in

continuous systems, the cumulative speci®c work of the

¯uid at ¯ow is described by the Lagrange di�erential

dW � dp=G � ÿc�T1� 1

 
ÿ T2

T1 ÿ �q1=g1�1=a ÿ q1=g2

!
dT1

� ÿ c�T1� 1

 
ÿ T2

T1 ÿ �ÿL1 dT1=dl�1=a �L2 dT1=dl

!
� �dT1=dl�dl: �20�

In this equation the temperature of the in®nite res-

ervoir, T2 � T e, is the constant parameter. In the ®rst

approximation L1 and L2 can be assumed as the tem-

perature independent quantities. The constancy as-

sumption for c1 is more risky, and should be restricted to

ideal ¯uids. The total work W is the corresponding in-

tegral with respect to l, whose Euler±Lagrange equation

de®nes the extremal temperature pro®le T �l�.
Consider now multistage sequential systems. The sign

of the optimal work function V N � max W N de®nes the

working mode for an optimal sequential process as a

whole. In agreement with our conventions, W N and V N

are positive in work production modes. An engine pro-

cess accompanies the (overall) system's relaxation to

equilibrium, whereas the heat-pump process assures the

system's departure from equilibrium. Therefore in en-

gine modes, W > 0 and V > 0. In heat-pump modes,

W < 0 and V < 0, thus working with a function

RN � ÿV N � min�ÿW N � is more convenient. However

the direction of any sequential process is determined by

the positivity of entropy production rather than by the

sign of a work function. Of special attention are two

processes: that which starts with the state T 0 � T e and

terminates at an arbitrary T N � T , and that which starts

at an arbitrary T 0 � T and terminates at T e. In these

cases the functions V N generalize the classical exergy for

discrete processes with ®nite durations (which run in

pumping or engine modes).

In multistage systems one should sum expressions

corresponding with Eq. (15) over stages. All nth stage

quantities are designated by the superscript n. As in the

continuous case, the partial conductance gn
1 (the product

of the transfer coe�cient an
1 and the change of a cu-

mulative area An
1 at the nth stage) is the basic transfer

variable. A suitably transformed form of this equation,

Eq. (21) below, is useful. It applies the previous de®ni-

tions in an expression for the work delivered or con-

sumed at the stage n per unit ¯ow of the resource ¯uid

(the ¯uid driving an engine or the ¯uid heated in the

condenser of a heat pump)

pn=G�ÿc1�T n� 1

 
ÿ T e

T n
1 ÿ�qn

1=gn
1�1=aÿqn

1=gn
2

!
�T n

1 ÿT n
1 �

� ÿc1�T n� 1

 
ÿ T e

T n
1 ÿ�ÿun

1�1=a��gn
1=gn

2�un
1

!
�T n

1 ÿT n
1 �:

�21�
It was assumed here that the reservoir temperature T2

is equal to the constant temperature of the environment,

T e.

4. Discrete and continuous integrals for work and entropy

production

Summing the local work expressions over stages and

casting the problem in the format of the discrete maxi-

mum principle we arrive at the discrete functional of

consumed work

�ÿW N � �
XN

n�1

c1�T n� 1

 
ÿ T e

T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1

!

� �T n
1 ÿ T nÿ1

1 � �
XN

n�1

c1�T n�

� 1

 
ÿ T e

T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1

!
un

1h
n
1: �22�

where hn
1 � �ln ÿ lnÿ1�=Ln

1. A special form of this

equation which deals with the Newtonian heat transfer

in a ¯uid with a constant c may be written as
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�ÿW N � �
XN

nÿ1

c 1

�
ÿ T e

T n
1 � un

�
unhn; �220�

where un � ÿqn
1=gn. In this formula the interval hn refers

to the overall conductance gn and to the overall non-

dimensional quantity: the number of overall heat

transfer units, whereas its counterpart hn
1 in the general

formula, Eq. (22), refers to the partial quantity Ln
1 and

hence to the partial number of heat transfer units, sn
1.

The discrete functional (22) has to be minimized

subject to the di�erence constraints

T n
1 ÿ T nÿ1

1

hnÿ1
1

� un
1 �23a�

and

sn
1 ÿ snÿ1

1

hn
1

� 1: �23b�

Eq. (22) describes the work which must be supplied

to processes in which the controlled ¯uid is sequentially

heated in condensers of N endoreversible heat pumps.

Yet, this formulation is valid for both process modes,

i.e., for the heat-pump mode in which work is consumed

and for the engine mode in which work is generated.

In the limiting case of an in®nite number of stages a

work integral follows from Eq. (22)

W � P=G

� ÿc1�T1� 1

 
ÿ T e

T1 ÿ �dQ1=dc1�1=a ÿ �dQ1=dc2

!
dT1

� ÿc1�T1� 1

 
ÿ T e

T1 ÿ �ÿ _T1�1=a � �g1=g2� _T1

!
_T1 ds1;

�24�
where the derivative dQ1=dc1 � lim�q1=g1� � ÿdT1=ds1

is the limiting driving heat at an in®nitesimal stage per

unit thermal conductance 1. The temperature derivative
_T1 is with respect to the non-dimensional time s1 or the

partial number of heat transfer units, which satis®es the

second de®nition in Eq. (18a). The special case of Eq.

(24) refers to the Newtonian heat transfer with a con-

stant speci®c heat

W � P=G � ÿ
Z T f

T i

c 1

�
ÿ T e

T1 ÿ dQ=dc

�
dT1

� ÿ
Z T f

T i

c 1

�
ÿ T e

T1 � _T1

�
_T1 dc: �240�

This formula involves the overall non-dimensional

quantity s and the related derivative _T � dT1=ds.

Integral (24) generalizes for non-Newtonian heat

exchange the recent result, Eq. (240) of [32]. The two

extrema for work (24), �ÿWmin� and �Wmax�, describe the

work limits for ¯uid state changes in two continuous

processes of which the ®rst runs in an original direction

and the second in the inverse direction. In an original

process, the initial temperature is T i and the ®nal tem-

perature is T f , in the inverse process the direction is from

T f to T i. The result for �ÿWmin� de®nes the lower bound

referred to ¯uid's heating in an in®nite sequence of ini-

®nitesimal heat pumps, whereas that for �Wmax� de®nes

the upper bound referred to ¯uid's cooling in an in®nite

sequence of ini®nitesimal engines. For pure heat transfer

processes, to which Eq. (11) applies, these bounds can

conveniently be evaluated as di�erences between ®nite-

time exergies evaluated for initial and ®nal states of the

process [21,22,31]. Further we will consider generalized

exergies which describe coupled heat and mass transfer;

this will make it possible to determine generalized

bounds on work production or consumption for more

di�cult processes.

First, however, we recall the Gouy±Stodola law

which allows to identify the entropy production in work

functionals without direct recourse to an irreversible

entropy balance. Indeed by integration of Eq. (24) a

non-Newtonian generalization of the work functional

(240) is found

W � P=G � ÿ
Z T f

T i

c1�T1�

� 1

 
ÿ T e

T1

� T e

T1

ÿ T e

T1 ÿ �ÿ _T1�1=a � �g1g2� _T1

_T1

!
ds1

� ÿ
Z T f

T i

c1�T1� 1

�
ÿ T e

T1

�
dT1 ÿ T e

Z T f

T i

c1�T1�

�
ÿ �ÿ _T1�1=a � �g1=g2� _T1

h i
T1 T1 ÿ �ÿ _T1�1=a � �g1=g2� _T1

h i
0@ 1A _T1 ds1: �25�

In the second line, the reversible thermodynamic

work W rev (the classical exergy change) was singled out

as the separate integral. The second integral represents

the total production of the speci®c entropy when ¯uid

changes its temperature from T i to T f . To e�ectively deal

with this entropy production we will use the substitution

de®ning the ``driving temperature''

T 0 � T1 ÿ �ÿ _T1�1=a � �g1=g2� _T1: �26�
With this substitution the classical form of the en-

tropy production is explicit in the work functional

W � P=G

� ÿ
Z T f

T i

c1�T1� 1

�
ÿ T e

T1

�
dT1

ÿ T e

Z T f

T i

c1�T1� 1

T1

�
ÿ 1

T 0

�
dT1: �250�

whereas the associated e�ciency (24) takes the Carnot

form with respect to T 0 and T e
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g � 1ÿ T20

T10
� 1ÿ T e

T1 ÿ �ÿ _T1�1=a � �g1=g2� _T1

� 1ÿ T e

T 0
:

�140�

Note that the associated equation of the heat ex-

change is not of the simple form _T � T 0 ÿ T1; it is rather

contained in the de®nition of T 0, Eq. (26). If, however,

a � 1, i.e., the ¯uid is Newtonian, the linear kinetics
_T1 � T 0 ÿ T1 is obtained from Eq. (26) in which the

overall rather than partial number of heat transfer units

represents the non-dimensional time variable s. With T 0

in Eq. (240) a familiar functional for Newtonian heat

exchange is recovered [32]

W � P=G

� ÿ
Z T f

T i

c 1

�
ÿ T e

T1

�
dT1 ÿ T e

Z T f

T i

c
�T 0 ÿ T1�2

T1T 0
ds:

�24
0 �

All above equations apply the `driving temperature'

T 0, as an alternative control. 1 Due to this special control

variable we have arrived at the entropy production in

Eq. (25) which is in agreement with the well-known ex-

pression for the entropy production in conventional

heating processes, which do not produce any work

[12,23±26]. The driving temperature T 0 appears as an

absolute temperature of an external ¯uid whose thermal

e�ect exerted on the ¯uid heated or cooled by a thermal

machine replaces the joint e�ect of the Carnot machine

and the reservoir. In terms of T 0 and T e the ®rst-law

e�ciency is simply given by the Carnot formula, Eq.

(140). It can also be proven that T 0 is a positive quantity

[23].

The second integral in Eq. (250) relates the speci®c

entropy production to the product of the di�erential

change of ¯uid's enthalpy, dI � cdT , and the driving

force �1=T1 ÿ 1=T 0�. In this analysis we observe that it is

the entropy production which causes the non-potential

component of the work integral. In terms of T 0 Eqs. (25)

and (250) describe the Gouy±Stodola law in the control

space. They prove that minimizing of the entropy pro-

duction in a ®xed-end control problem assures a mini-

mum of the work consumption in the heat-pump mode

and a maximum of work production in the engine mode.

Since their ®rst terms are path independent (potential)

terms, the (non-potential) entropy production plays the

role of a kernel which solely determines properties of

extremal paths.

5. Optimization results for operations with pure heat

transfer

For the Newtonian case an analytical result can be

obtained from the Euler±Lagrange equation for inte-

grals (240) or �2400�. The result is a common (mode in-

dependent) di�erential equation that holds for both

®xed-end and free-end extremals of the extremum work

and minimum entropy production problems [21,22]

T1
�T1 ÿ _T 2

1 � 0: �27�
Eq. (27) is restricted to the pure heat transfer pro-

cesses and is satis®ed by the function T �s� which is a

solution to a simple di�erential formula, _T �s� � nT ,

where the constant n is the rate indicator which is pos-

itive for ¯uid's heating and negative for ¯uid's cooling.

Using the boundary conditions for T1 �T1 � T i at si

and T1 � T f at sf� we conclude that an unconstrained

extremal path is an exponential curve T1�s� �
T i

1�T f
1=T i

1�s=s
f

whose accomplishment in time requires the

following temperature control

T 0�s� � T1�s��1� n�
� T i

1 T f
1=T i

1

ÿ �s=sf� �
1
ÿ � ln T f

1 =T i
1

ÿ �
= sf
ÿ ÿ si

��
:

�28�
In terms of T 0, the structure of the optimal control is

the same for both traditional processes (without work)

and processes in thermal machines. In this paper we also

show other properties of this sort. They help to model

the work-assisted operations which are much less known

that the traditional ones. Modeling that uses T 0 is es-

pecially helpful for non-Newtonian transfer processes,

for which analytical formulae cannot be found, and only

numerical approaches can generate results generalizing

Eqs. (27) and (28).

The di�culties due to non-existence of analytical

solutions for non-Newtonian heat exchange stimulate

considerations towards numerical evaluation of extre-

mals of multistage processes with ®nite stages. The

general discrete model of the non-Newtonian heat ex-

change is represented by Eqs. (22), (23a) and (23b). Two

modern optimization methods can be applied: Bellman's

dynamic programming (DP) and (a discrete version of)

Pontryagin's maximum principle.

Let's ®rst brie¯y describe the typical DP algorithm.

As the time sn
1 does not appear explicitly in the process

model, a modi®ed rather than original criterion is min-

imized to reduce the problem dimensionality and in-

crease the results accuracy. The criterion is de®ned as

the sum
P�1n

0 � h1�hn, where 1n
0 � ÿpn=G is the intensity

of speci®c work consumption per unit time s1, and h1 is

both the Lagrange multiplier of the time constraint and

the numerical value of the Hamiltonian function H. A

computer program serves to generate tables of the

1 For an additional discussion of the physical interpretation

and properties of T 0 the reader is referred to [23], where,

however, its generalization to coupled transfer processes was

still unknown. Eqs. (41)±(57) of the present work show the role

of T 0 in a coupled transfer process.
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potential function Rn
��T n� � min�ÿW N

� � along with op-

timal controls, un
1 and hn

1, and optimal states T n
1 . This is

accomplished by solving Bellman's recurrence equation

of the problem

Rn
��T n

1 �

�min
un

1
;hn

1

c�T n
1 � 1

  (
ÿ T e

T n
1 ÿ�ÿun

1�1=a��gn
1=gn

2�un
1

!
un

1�h1

!

�hn
1�Rnÿ1

� T n
1

ÿ ÿun
1h

n
1

�)
: �29�

With h1 used as the Lagrange multiplier of the time

constraint, equations of this sort do not contain the time

sn
1 as the state variable. The end coordinates, T 0 and T N ,

may be ®xed, but the total duration, sN
1 , must be free. In

an optimal process this duration follows for an assumed

h1 as a function of ®xed end values and total number of

stages, N . A generalization of this equation which con-

tains the polymer concentration serves to generate nu-

merical solutions for operations in which the mass

transfer is essential.

To apply the discrete maximum principle, we should

®rst of all note that the process model is linear with

respect to the unconstrained variable hn. In this case, a

discrete algorithm with a constant Hamiltonian consti-

tutes the suitable optimization scheme. Discrete opti-

mization theory is then similar to the Pontryagin's

continuous theory, as shown on examples of multistage

separations and chemical reactors [24±30]. In [23] we

have initiated application of this discrete theory to

multistage energy systems with Newtonian heat ex-

change. For the general non-Newtonian model, Eqs.

(22), (23a) and (23b), the constancy of the discrete

Hamiltonian (the consequence of the optimality of hn) is

expressed by the equality

H nÿ1 � pnÿ1
1 un

1

ÿ c�T n
1 � 1

  
ÿ T e

T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1

!
un

1

!
� h1;

�30�

where, by de®nition, pn
1 � oRn=oT n

1 , and h1 � 0 refers to

the quasistatic process. We search for the maximum of

the above Hamiltonian with respect to the controls un
1.

For a stationary optimal control un
1, the Hamiltonian

H nÿ1 satis®es the stationarity condition oH nÿ1=oun
1 � 0

which yields

pnÿ1
1 � c�T n

1 � 1

 
ÿ T e�T n

1 � �aÿ1 ÿ 1��ÿun
1�1=a�

�T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1�2
!
: �31�

As �1� gn
1=gn

2�un
1 equals un, the negative of the heat

¯ux q1 per unit of the overall conductance g, we obtain

for the Newtonian heat transfer �a � 1�

pnÿ1
1 � c�T n

1 � 1

 
ÿ T eT n

1

�T n
1 � �1� gn

1=gn
2�un

1�2
!

� c 1

 
ÿ T eT n

1

�T n
1 � un�2

!
� pnÿ1: �310�

After eliminating pn
1 from Eqs. (30) and (31) an in-

tegral of the discrete motion follows

c�T n
1 �T e

gn
1=gn

2

ÿ ��un
1�2 � aÿ1 ÿ un

1

ÿ ��1�1=a�

�T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1�2

� h1: �32�

When the conductances and speci®c heat are con-

stant and a � 1, Eq. (32) goes over into the recent

Newtonian result [31,32]

h1g1

cT eg
� gn

1�gn
1=gn

2 � 1��un
1�2

gn�T n
1 � �gn

1=gn
2 � 1�un

1�2
� �un�2
�T n

1 � un�2 �
h

cT e

�320�
which is consistent with the equalities hg � h1g1 and

dR � ÿhds � ÿh1 ds1. Accordingly, one obtains two

modes of control corresponding to increasing and de-

creasing temperatures T n in time, sn
1 or sn. Neither

Newtonian nor non-Newtonian optimal control is in-

variant with respect to the control's sign change. Only in

the Newtonian case, the solution of Eq. (320) with re-

spect to un, is analytical. It corresponds with Eqs. (27)

and (28), and has the form

un

un � T n
1

� �
�������
h

cT e

r
; �33�

where the positive sign refers to the ¯uid's heating and

the negative one to the ¯uid's cooling. Using the state

equation (23a) we ®nd (in terms of the time sn rather

than sn
1) an equation for the optimal evolution of the

process state

T n
1 ÿ T nÿ1

1

hn � nT n
1 ; �34�

where hn � Dsn; un � 1� �gn
1=gn

2�un
1, and an intensity

constant n was de®ned in terms of the constant h as

n � �
�������
h

cT e

r
1

 
ÿ �

�������
h

cT e

r !ÿ1

: �35�

Eq. (34) proves that the discrete rate in an extremal

Newtonian process changes proportionally to the tem-

perature, the result analogous to that obtained for an

optimal intensity of temperature change in continuous

systems [32±37]. For an extremal non-Newtonian pro-

cess simple optimal formula (34) does not hold, thus a

numerical procedure should be designed. First Eq. (32)

is solved numerically for the optimal control data in the

form un
1�T n

1 ; T
e; gn

1; g
n
2; a; h1�. Next a di�erence equation,

or a non-Newtonian generalization of Eq. (34)
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T n
1 ÿ T nÿ1

1

hn
1

� un
1�T n

1 ; T
e; gn

1; g
n
2; a; h1� �36�

should be solved simultaneously with the second ca-

nonical equation

pn
1 ÿ pnÿ1

1

hn
1

� ÿ oH nÿ1

oT n
1

� oc�T n
1 �

oT n
1

1

 
ÿ T e

T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1

!
un

1

� c�T n
1 �T eun

1

�T n
1 ÿ �ÿun

1�1=a � �gn
1=gn

2�un
1�2

�37�

which describes the stationary extremum of a stage cri-

terion with respect to T n. [The Newtonian limit of the

derivative is �cT eun�T n � un�ÿ2
.] The procedure leads to

the interstage temperatures T n between the stages n and

n� 1. In the Newtonian case the temperatures T n are the

geometric means of the temperatures T nÿ1and T n�1 for

any two-stage subprocess. Use of the boundary con-

ditions for T 0 and T N yields all interstage temperatures

in terms of the boundary temperatures. For the New-

tonian heat exchange we ®nd T n � �T N �n=N

�T 0�n�Nÿ1�=Nÿ�nÿ1�
or more speci®cally

T 1 � �T N �1=N �T 0��Nÿ1�=N
;

T 2 � �T N �2=N �T 0�2�Nÿ1�=Nÿ1; . . .

T Nÿ1 � �T N ��Nÿ1�=N �T 0�1=N
:

�38�

Along with the condition of the constant H n, this

result yields hn � hn�1 � h � sN=N . The driving tem-

peratures which assure the accomplishment of that op-

timal trajectory are

T 0n � T n�1� n� � �T N �n=N �T 0�n�Nÿ1�=Nÿ�nÿ1�

� 1

 
� N

sN ÿ s0
1

"
ÿ T 0

T N

� �1=N
#!

: �39�

For the non-Newtonian heat exchange the solutions

of this sort can only be numerical. Two important

conclusions are valid: (i) in terms of T 0 the optimal

control solutions for the traditional and work-assisted

discrete processes are identical, and, (ii) since the inter-

vals of the number of transfer units, hn, are measures of

exchange areas at the stages, the model incorporates the

constraint on the total area of heat transfer.

Eqs. (34) and (36) describe the discrete rate of state

changes in an extremal process. In the simplest (New-

tonian case) this rate changes proportionally to the

¯uid's temperature T n. Also the driving temperature, T 0n,

changes in this case proportionally to T n, the result

analogous to Eq. (38) of a continuous optimal process.

In fact, Eq. (36) and associated numerical optimal so-

lutions are non-Newtonian generalizations of the opti-

mality conditions (28) and (39). The continuous result

(28) was recently obtained for heat exchangers, simu-

lated annealing and in®nitesimal NCA sequences

[32±37].

For standard boundary conditions, the optimal work

obtained through numerical optimization is a discrete

generalization of the continuous ®nite-time exergy

[38,39]. 2 The heat-pump mode exergy, A � �ÿW �min,

refers to the N-stage process which starts with T e and

terminates at T; its optimal path (Eq. (38) or its non-

Newtonian generalizations) is consistent only approxi-

mately with the equipartition principle for the entropy

production [40]. This exergy de®nes the lower bound on

the work consumption. For short durations, the bound

is signi®cantly higher than the minimal work of classical

thermodynamics. Otherwise, the engine mode exergy,

A � �W �max, can be signi®cantly lower than the classical

maximal work. This explains restrictive applicability of

classical thermodynamic bounds [41] when they are ap-

plied to real processes, and shows that these bounds

should be replaced by stronger bounds obtained from

non-equilibrium thermodynamics [42].

In terms of the driving temperature T 0 optimal per-

formance criteria have simple universal forms even for

the general (non-Newtonian) heat exchange. For ex-

ample, the minimum work in continuous heat-pump

modes is described by the optimal performance function

R�T i; T f ; sf ÿ si� � min�ÿP=G�

� min

Z sf

si

c1�T1� 1

�
ÿ T e

T 0

�
_T1 ds1

� H�T f� ÿ H�T i� ÿ T e�S�T f� ÿ S�T i��

� T e
min

Z T f

T i

c1�T1� 1

T1

�
ÿ 1

T 0

�
_T1 ds1;

�40a�
where the state variable T1 and the driving temperature

T 0 are connected by the kinetic di�erential constraint

T 0 � T1 ÿ �ÿ _T1�1=a � �g1=g2� _T1: �26�
When T 0 � T2 � T e in the case without any work

production, this constraint represents the overall classi-

cal kinetics under the overall driving force T1 ÿ T e. Eq.

(40a) is an optimal expression associated with the gen-

eral Eqs. (25) and (250). The complexity appears neither

in the work criteria nor in the entropy production but in

the kinetic constraint.

Likewise, the maximum work in the engine mode is

described by the optimal function

2 See [21,22,32,38,39] for the ®nite-time exergy of continu-

ous processes, a detailed derivation of Eq. (28) in [32] and a

thermodynamic argument for the uniformity of driving forces

T 0 ÿ T [40].
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V �T i; T f ; sf ÿ si� � max�P=G�

� max

Z sf

si

ÿc1�T1� 1

�
ÿ T e

T 0

�
_T1 ds1

� H�T i� ÿ H�T f� ÿ T e S�T i�ÿ ÿ S�T f��
ÿ T e

min

Z T f

T i

c1�T1� 1

T1

�
ÿ 1

T 0

�
_T1 ds1;

�40b�
where, again, T1 and T 0 are linked by di�erential con-

straint (26). Simple common expressions, contained in

Eqs. (40a) and (40b), describe the associated minimum

of entropy. A single common function R (or V) is

capable of describing the optimal work in both modes. R

can be interpretted as a thermodynamic cost that is

positive for the heat-pump mode and negative for the

engine mode; thus V � ÿR is the pro®t-type function.

For cascades of heat pumps and engines an analogous

picture exists with sums replacing integrals and with

di�erential ratios instead of derivatives.

The structure of the control equations shows that the

driving temperature T 0 can be interpretted as the quan-

tity replacing the upper temperature T10 of the thermal

machine in the general case when both conductances g1

and g2 are essential. Whenever the e�ect of the second

resistance �gÿ1
2 � is negligible, T 0 � T10 . Indeed, when gÿ1

2

tends to zero, T20 � T2 � T e, thus, from Eq. (140),
T 0 � T10 . In this case the control equations are valid for

the temperature T10 . However, the crucial statement

which explains how to obtain T 0 follows from the

equality T 0 � T2 at the state in which work is not pro-

duced (the so-called ``short-circuit point'' of the system,

where g � 0). This leads to the theorem: the analytical

expression for the driving temperature T 0 can be obtained

from the analysis of the short-circuit point by solving the

energy (mass) exchange equations in which T 0 replaces T2

or T e. The solution to these equations should be found for

the temperatures T10 and T20 in terms of the common heat

¯ux q1; after making the identi®cation T10 � T20 the tem-

perature T 0 follows in the form T 0 � f �T1; q1; g1; g2�. The

reader can verify that when this theorem is applied to

our thermal problem, the temperatures T10 and T20 are:

T10 � T1 ÿ �q1=g1�1=a
and T20 � T 0 � q1=g2. Their equat-

ing yields T 0 � T1 ÿ �q1=g1�1=a ÿ q1=g2, which is the re-

sult equivalent with Eq. (26).

The above theorem is the basis for thermodynamic

analyses of heat pumps and engines in continuous pro-

cesses and cascade systems with ®nite number of stages.

With the idea of the driving state, the analytical ex-

pression for the entropy production is precisely that of

purely dissipative processes (i.e., those without work

production or consumption). With the chemical poten-

tials included, the theorem also holds for more di�cult

processes in which the polymeric ¯uid changes its con-

centration due to the coupled heat and mass transfer.

6. Coupled transfer and analogy between work-assisted

and traditional operations

To generalize the idea of the driving state in thermal

machines with coupled heat and mass transfer we need

to apply the idea of the driving chemical potential. For

simplicity, we shall neglect from now the subscript 1 of

the controlled phase (the polymeric ¯uid). With the help

of the results of our recent analysis [31], we ®nd a gen-

eralized relation which links work and entropy produc-

tion

W � P=G � ÿ
Z T f

T i

1

��
ÿ T e

T 0

�
dH� T e l0

T 0

�
ÿ le

T e

�
dX

�

� ÿ
Z T f

T i

1

��
ÿ T e

T

�
dH� T e l

T

�
ÿ le

T e

�
dX

�

ÿ T e

Z T f

T i

1

T

��
ÿ 1

T 0

�
dH� l0

T 0

�
ÿ l

T

�
dX

�
; �41�

where H is the enthalpy of a polymeric solution per unit

mass of the solvent and X is the polymer's concentra-

tion. As before, the Gouy±Stodola law links the real

work W (the ®rst integral) with the reversible work W rev

(the second integral) and the negative product of T e and

the entropy production (the third integral). The driving

chemical potential, l0, appears here as an extra opera-

tional variable.

Eq. (41) incorporates the result of invariancy of the

entropy production in a work-assisted operation with

respect to the transformation of variables. This equation

exploits the fact that an original expression for the en-

tropy production is in terms of the upper and lower

thermal potentials of the ¯uid circulating in the thermal

machine �T10 ; T20 ; l10 and l20 ). From this original ex-

pression the appropriate result for T 0 is the same as for

the processes with pure heat transfer, and it can be

written in the form

T 0 � T e T10

T20
�42�

[23]. Note that the theorem of Section 5 which applies

the equality T 0 � T e or T 0 � T2 at the short-circuit point

where T10 � T20 is consistent with this equation. Likewise,

in terms of the upper and lower thermal potentials of the

circulating ¯uid �T10 ; T20 ; l10 and l20 �, the driving chemi-

cal potential l0 follows as:

l0 � T 0�le=T e � T20=T e�l10=T10 ÿ l20=T20 ��: �43�
Again, at the short-circuit point, where l10 � l20 , the

equality l0 � le holds which proves that the generalized

theorem (including mass transfer) is valid. Again, the

most essential result obtained here is the conclusion that

in terms of the driving temperature T 0 and driving

chemical potential l0 the entropy production in a work-
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assisted process acquires the form of the entropy pro-

duction for a traditional process without any work

production. Accordingly, we shall implement below en-

tropy production formulae which are known for tra-

ditional processes of non-isothermal mass transfer into

the work formulae describing processes with thermal

machines.

Now an extension of Eqs. (40a) and (40b) will be

derived for simultaneous heat and mass transfer. The

controlled phase is described in terms of the solution's

enthalpy H and polymer's concentration X.; they both

are referred to the unit mass of the solvent. The space

�H;X� is the state space of the process. Note that the

accepted pair of the state variables is suitable for dilute

solutions as then G � constant. As the possible candi-

dates, we consider two models of control. The ®rst is

that of a conventional crosscurrent process in which an

external immiscible phase with the controlling par-

ameters (I 0 and Y0) and the ®ow G0 exchanges the energy

and mass with the controlled solution of a polymer. The

second control model applies the Onsagerian scheme of

coupled heat and mass transfer. In the ®rst model, our

choice of the state and control variables is caused by the

fact that the most appropriate form of energy balance

for a ¯uid at ¯ow is in terms of the enthalpy. Using the

Lewis analogy linking the coe�cients of energy and

mass ¯ows we can write down a linear exchange equa-

tion and the corresponding non-linear expression (fol-

lowing the arrow)

_H � I 0 ÿ I 0s�H;X� ! _H�H;X; I 0;Y0�; �44�

where the time derivatives involve the time de®ned such

that ds1 � dG0=G and the controlling enthalpy I 0 is that

of the external or driving phase. The s-subscripted

quantities refer to equilibrium of the external phase with

the solution. The above energy equation should be

supplemented by an equation for the exchanged mass,

which is

_X � _YÿY0s�H;X� ! _X�H;X; I 0;Y0�: �45�

Again, the controlling concentration Y0 is that of the

external driving phase. See Eqs. (48)±(54) below for

Onsagerian scheme of control. For each control scheme

we shall derive a suitable formula for the entropy pro-

duction in conventional operations which will model the

entropy production in operations with thermal ma-

chines.

The speci®c entropy produced per unit mass of the

polymeric solution is the path integral over the scalar

product of the di�erential enthalpy±mass vector

�dH; dX� and the driving force vector �1=T ÿ 1=T 0;
l=T ÿ l0=T 0�. With the energy and mass balances, Eqs.

(44) and (45), the discussed integral can be written as

follows:

Sr �
Z T f

T i

1

T

�
ÿ 1

T 0

�
dHÿ l

T

�
ÿ l0

T 0

�
dX

�
Z T f

T i

1

T

��
ÿ 1

T 0

�
_H H;X; I 0;Y
ÿ �

� l0

T 0

�
ÿ l

T

�
_X�H;X; I 0;Y�

�
ds: �46�

The temperatures and chemical potentials are here

functions of respective enthalpies and concentrations,

however, for brevity, this fact is not explicit in Eq. (46).

This equation can incorporate arbitrarily complex non-

linear relationships of thermodynamic and kinetic ori-

gin. By using Eq. (46) in work formula (41), changes of

work potentials and ®nite time exergies can be evalu-

ated through optimization of the following work crite-

rion

W � P=G � ÿ
Z T e

T i

1

��
ÿ T e

T 0

�
dH� T e l0

T 0

�
ÿ le

T e

�
dX

�
�Hi ÿHf ÿ T e�Si ÿSf� ÿ le�Xi ÿXf�

ÿ T e

Z T f

T i

1

T

��
ÿ 1

T 0

�
_H H;X; I 0;Y
ÿ �

� l0

T 0

�
ÿ l

T

�
_X H;X; I 0;Y
ÿ ��

ds; �47�

where the kinetic constraints (which link the state co-

ordinates of the ¯uid with those of the controlling phase)

are implicit.

To formulate and handle these constraints we use the

theorem of Section 5 in its generalized form, which tells

us that in the special case without any work production

(i.e., at the short-circuit point) expressions for the driv-

ing thermal parameters �T 0; l0;H0;X0, etc.) in terms of

the state variables �T ; l;H;X, etc.) and their time de-

rivatives � _T ; _l; _H; _X, etc.) describe the environment (or

reservoir) parameters. Thus by exploiting a given clas-

sical kinetics (the one which governs the process without

work production) we are able to determine intensive

parameters of driving states. We thus obtain constraints

which describe an overall classical kinetics under the

overall driving force. In the ®rst model these constraints

are represented by Eqs. (44) and (45), in the second ± by

Eqs. (54) and (55).

Consider now the second model. It is based on

coupled linear kinetics which satisfy Onsager's reci-

procity relations. For the resource ¯uid as the phase 1

the following kinetics is valid

1

T1

ÿ 1

T 01
� rHH

1
_H1 � rHx

1
_X1;

l10

T10
ÿ l1

T1

� rXH
1

_H1 � rXX
1

_X1 �48�
whereas for the thermal reservoir as the phase 2 or the

environment
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1

T20
ÿ 1

T2

� rHH
2

_H2 � rHX
2

_X2;
l2

T2

ÿ l20

T20

� rXX
2

_H2 � rXX
2

_X2: �49�
These kinetic equations hold at the purely dissipative

state (short circuit point) of the system where there is no

work production �T10 � T20 and l10 � l20 �, the energy

and mass ¯uxes are continuous through the interface

(i.e., _H1 � _H2 � _H and _X1 � _X2 � _X�, and the iden-

tities T2 � T 0 and l2 � l0 hold. Applying these identities

in Eqs. (48) and (49) we ®nd

1

T10
� 1

T
ÿ rHH

1
_Hÿ rHX

1
_X;

l01
T 01

� l
T
� rXH

1
_H� rXX

1
_X; �50�

and

1

T20
� 1

T 0
� rHH

2
_H2 � rHX

2
_X2;

l20

T20

� l0

T 0
ÿ rXH

2
_H2 ÿ rXX

2
_X2: �51�

(As in Eqs. (41), (46) and (47), the subscript 1 of the

resource ¯uid was omitted.) After taking T10 � T20 and

l10 � l20 we obtain the driving intensities T 0 and l0 in the

form

1

T 0
� 1

T
ÿ rHH

1

ÿ � rHH
2

�
_Hÿ rHX

1

ÿ � rHX
2

�
_X �52�

and

l0

T 0
� l

T
� rXH

1

ÿ � rXX
2

�
_H� rXX

1

ÿ � rXX
2

�
_X: �53�

Therefore the overall kinetics in terms of the driving

and controlled intensities, i.e., in the form which applies

in Eq. (41), is represented by the equations

1

T
ÿ 1

T 0
� rHH _H� rHX _X; �54�

l0

T 0
ÿ l

T
� rXH _H� rXX _X: �55�

With the Onsager's reciprocity relations the entropy

production assumes the classical form

Sr �
Z T f

T i

1

T

�
ÿ 1

T 0

�
dH� l0

T 0

�
ÿ l

T

�
dX

�
Z T f

T i

rHH _H2
�n

� 2rHX _X _H� rXX _X2
�o

ds1: �56�

This proves that the second law of thermodynamics is

satis®ed identically by the (second) model based on the

Onsager's theory.

Consider yet the ®rst model in the linear case, i.e.,

when its thermodynamic ¯ows are proportional to dif-

ferences of enthalpies and concentrations. The entropy

production (46) is then

Sr �
Z T f

T i

1

T

�
ÿ 1

T 0

�
dHÿ l

T

�
ÿ l0

T 0

�
dX

�
Z T f

T i

1

T

��
ÿ 1

T 0

�
I 0
ÿ ÿ I 0s H;X� ��� l0

T 0

�
ÿ l

T

�
� �Y0 ÿY0S�H;X��

�
ds: �460�

Now it seems that the satisfaction of the second law is

not assured. Nonetheless our numerical tests showed

that models of this sort can also preserve the second law

in a broad range of states. To substantiate the results of

these tests, we introduce the Hessian of the entropy of

driving phase, o2S0=oI 0oX0, which is the matrix of the

second order derivatives of S0 with respect to I 0 and Y0.
The entropy production can then be written in the form

of a positive integral

Sr �
Z T f

T i

1
T ÿ 1

T 0

� �
l0
T 0 ÿ l

T

� �
264

375 cII cIY

cYI cYY

 !
1

T

��8><>: ÿ 1

T 0

�

� l0

T 0

�
ÿ l

T

��9>=>;ds; �57�

where the positive matrix of capacities cI 0Y0 �
ÿ�o2S0=oI 0oY�ÿ1

is the reciprocal of the negative en-

tropy Hessian. These equations correspond to the en-

tropy di�erential in the form d�ÿS0� � ÿTÿ1 dI 0 �
�lTÿ1�dY0; they apply the entropy production and the

second law in their forms known from the thermody-

namic theory of stability. The entropy production in the

corresponding multistage process is

SN
r �

XN

1

1
T n ÿ 1

T 0n

� �
l0n
T 0n ÿ ln

T n

� �
264

375 cII cIY

cYI cYY

 !
1

T n

��8><>: ÿ 1

T 0n

�

� l0n

T 0n

�
ÿ ln

T n

��9>=>;hn: �570�

Optimization of typical criteria of entropy produc-

tion, made under assumption of the constancy of coef-

®cients, leads quite generally to the conclusion about the

constancy of the entropy production intensity along an

optimal path [33±37,40]. For quadratic approximations

of these criteria, optimization implies the constancy of

driving forces along an optimal path. These properties

are sometimes imbeded in the so-called principle of

equipartition of the entropy production or principle of

equipartition of thermodynamic forces [40]. However,
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the `principle' is valid only when there is no constraints

imposed on parameters of the controlling phase. In the

case of operative constraints, the principle is violated.

Postquadratic terms in the optimization criterion and

non-linearities in kinetic equations may also cause vi-

olation of the principle. For all these reasons exact work

functionals, such as Eq. (41) or (47), should be preferred

in optimization.

Using the idea of driving intensities, we achieved the

coincidence of the entropy production expressions in

conventional and work-assisted operations. Eqs. 46),

(460), (56), (57) and (570 thus apply for thermal machines

as representations of their lost work divided by T e. This

is important; up to now it was unknown whether an

equation of the classical structure could serve as a suf-

®ciently exact model for a work-assisted system. Dis-

covery of the driving controls was the necessary fact to

prove the equivalence of mathematical models for both

sorts of operations.

7. Generalized exergies for dilute and dense solutions of

polymers

When one of the end states is that of the equilibrium

with the environment, extremizing of the total work over

a ®nite period of time leads to ®nite-time exergies

[21,22,31,32,38,39]. In ®nite time processes two distinct

exergies exist: that of the engine mode and that of the

heat-pump mode. Depending on the state coordinates

used, dilute or dense polymeric solutions can be de-

scribed. For dilute solutions we use the concentration X
or the mass of the polymer per unit mass of the solvent

and the related (solvent basis) enthalpy H. For dense

solutions the concentration W de®ned as the mass of

solvent per unit mass of polymer is more suitable.

For a given state of a dilute polymeric ¯uid �H;X�
and the state of equilibrium of this ¯uid with the envi-

ronment �He;Xe�, the ®nite-time exergy of the engine

mode is the maximum work produced during the opti-

mal passage from �H;X� to �He;Xe� and that of the

heat-pump mode is the minimum work consumed dur-

ing the optimal passage from �He;Xe� to �H;X�. It

follows from this de®nition that in the heat pump mode

the classical exergy [11] is increased by the product of the

environment temperature T e and the minimum entropy

production, Rr � min Sr. In the engine mode the classi-

cal exergy is decreased by the product of T e and

Rr � min Sr. For continuous changes of the ¯uid's state

A�T ;X; T e;Xe; sf ÿ si� � Aclass�T ;X; T e;Xe�
� T eRr�T ;X; T e;Xe; sf ÿ si�;

�58�
where Aclass is the classical exergy of the ¯uid. The plus

sign refers to processes departing from the equilibrium

whereas the minus sign to those approaching the equi-

librium. The classical reversible exergy

Aclass�T ;X; T e;Xe� � Hs ÿ H e
s ÿ T e�Ss ÿ Se

s �
� �Hp ÿ H e

p ÿ T e�Sp ÿ Se
p��X;

�59�
(see [11,41]) is consistent with the general Eq. (3). The

subscript s designates the partial quantities of the sol-

vent and the subscript p refers to the polymer.

Eqs. (58) and (59) are suitable for dilute polymeric

solutions. For a multistage process, a discrete counter-

part of Eq. (58) can be numerically generated with

Eq. (570); the computations should refer to a su�ciently

large N if one wants to approximate the continuous

exergy well enough. The minimum entropy production,

Rr � min Sr, in the last term of Eq. (58) is a function of

end thermodynamic states and non-dimensional dura-

tion (the number of mass transfer units). This last term is

non-classical, duration dependent term which vanishes

for in®nite durations. It should be distinguished from

the ®rst or classical term that has properties independent

of the direction of time. With the knowledge of the

classical exergy, explicit in the above equation, the nu-

merical procedure can generate data for both A and Rr.

From the ®nite-time exergy enhanced bounds follow on

the work production and consumption [32,42].

Consider now exergies of dense polymeric solutions.

Any classical exergy contains exclusively linear combi-

nation of di�erences of state functions which change

only sign but not magnitude of work when end ther-

modynamic states are inverted. This fact facilitates the

generation of work potentials for prescribed end states,

from which reversible exergies are recovered. Under the

assumption of constant heat capacities and with a for-

mula for the solution exergy per unit mass of solid basis

[43] we obtain the following ®nite-time work potential

for a dense polymeric solution

R T i;Wi; T f ;Wf ; T e;We; sf
ÿ ÿ si

�
� cs

ÿ �Wic1

�
T i
ÿ� ÿ T e

�ÿ T e ln
T i

T e

�
ÿ �cs �Wf c1� �T f

�
ÿ T e� ÿ T e ln

T f

T e

�
� RT e

M

Z Wi

Wf

ln
b�W; T e�

be�We; T e� dW

(

� T eRr�T i;Wi; T f ;Wf ; sf ÿ si�
)
: �60�

It holds in the regime where the decrease of the

pressure of the solvent's vapour is a measurable e�ect. In

Eq. (60) W is the solvent's concentration de®ned as the

mass of the solvent per unit mass of the polymer, and

b�W; T � is the relative pressure of the solvent (the ratio
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of the partial pressure of solvent's vapour over the

solution to the pressure of the saturated vapour over the

pure solvent). The superscript e refers to the equilibrium

with the reference solution in the environment. The

method exploits the empirical data of b�W; T � calcu-

lated from the knowledge of solvent's pressures over the

polymeric solutions and the pressures of solvent's satu-

rated vapour. This method follows that described earlier

for moist solids when the moisture creates a solution

with the solid [43].

Recalling that the interchange of end states is just the

transformation of system's modes, a general inequality

can be stated which describes cyclic processes with sol-

vents removal and addition. If an original process is in

engine mode then the inverse process is in heat pump

mode. When the dissipative term is so small that it can

be ignored, the equality V eng � Rpump � ÿV pump holds,

which describes the fact that the (reversible) work con-

sumed in the heat pump mode is completely recovered in

the engine mode. When the dissipation becomes essen-

tial, the inequality Rpump P V eng � ÿReng is valid. Thus

for any changes of states which occur within the positive

durations DAB and DBA in a cyclic operation with the

solvent's removals and additions A! B! A! B . . .

Rpump�xA; xB; x
e;DAB� � Reng�xB; xA; x

e;DBA�P 0: �61�

This inequality represents a special form of the second

law of thermodynamics. For a polymer that dissolves in a

solvent, Eq. (61) states that a cyclic operation composed

of the separation and dissolving can only consume net

work. However, the inequality sign changes whenever the

states are chosen in the range in which the polymer stops

to dissolve, i.e., when its precipitation from the solution

is the spontaneous process. To preserve Eq. (61) the

original states should be then inverted. In this case Eq.

(61) will state that the magnitude of work delivered in an

engine process of precipitation is less than that supplied

in a heat-pump process of virtual dissolving.

8. Concluding remarks

We are now able to formulate a few basic conclu-

sions. Separation and heat exchange operations with

polymeric ¯uids can be conducted conventionally in

mass and heat exchangers or in a work-assisted way with

thermal machines. The analysis of the derived optim-

ization models for traditional and work-assisted opera-

tions shows that a useful parallelism is operative for

expressions which describe entropy sources, exergy costs

and kinetic equations in both sorts of operations. This

parallelism is particularly lucid in the realm of processes

with pure heat transfer for which a special control

variable T 0, called the driving temperature, is essential.

The parallelism can be generalized to include processes

with simultaneous heat and mass transfer if their models

use the suitable controls: driving thermal potentials

(ÿ1=T 0 and l0=T 0). Due to the parallelism, the mathe-

matical identity does exist between expressions which

link work and entropy production through the Gouy±

Stodola law in traditional and work-assisted operations.

Consistently, in terms of the driving potentials

(ÿ1=T 0 and l0=T 0), the optimal control is the same for

both operations with thermal machines and for related

traditional operations, those without work production

or consumption. With the intensities (ÿ1=T 0 and l0=T 0)
in equations for power produced, the thermal e�ciency

is given by the Carnot formula, g � 1ÿ T e=T 0 even if

there is a coupled heat and mass transfer in the machine.

Yet, in the coupled transfer case, the power production

or consumption is determined not only by g but also by

the second component of the e�ciency vector,

b � T e�l0=T 0 ÿ le=T e�, Eq. (41). The bene®t from the

described parallelism is that expressions for exergy losses

in traditional coupled processes (without work produc-

tion) can model (more di�cult) exergy losses in complex

thermal machines with simultaneous heat and mass

transfer. Both multistage processes (described by di�er-

ence equations and optimization criteria in form of

sums) and corresponding continuous processes (de-

scribed by di�erential equations and optimization cri-

teria in form of integrals) can be modeled. Cases of

thermal systems where such modeling can be appropri-

ate are considered in the review [44].

We have developed the thermodynamic theory of

work limits for complex ¯uids in multistage systems with

thermal machines which may be di�erent at each stage

of the sequence. We have shown how to apply non-

Carnot e�ciencies in suitable optimization criteria

whose optimal values describe these work limits. We

have applied the mentioned parallelism between the

work-assisted and traditional operations to optimize the

former and obtain the work limits for ®nite time se-

quences. We have also shown how to derive the func-

tionals of work and entropy production and the work

limits to operations in which heat transfer is coupled

with transfer of mass. Our paper outlines also optim-

ization techniques for sequential work-assisted heating

and separation operations with complex ¯uids. We have

obtained optimal functions which de®ne bounds on

work consumption or production in thermal machines.

For short durations, the consumption (lower) bound is

signi®cantly higher than the minimal work of classical

thermodynamics; the production (upper) bound can

even vanish. Our equations for optimization potentials,

e.g. Eqs. (58), (60) and (61), which apply to processes

with simultaneous heat and mass transfer, explain re-

strictive applicability of classical thermodynamic

bounds and imply that these bounds should be replaced

by stronger bounds obtained from non-equilibrium

thermodynamics.
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